过敏性紫癜是什么症状| 固执的人是什么性格| 黑苦荞茶适合什么人喝| ariel是什么意思| 核载是什么意思| 乳腺结节3类什么意思| 泡芙是什么| 泌尿外科主要看什么病| dha有什么作用| 尿素高什么原因| 甲状腺一度肿大是什么意思| 什么颜色加什么颜色等于棕色| 什么人容易得甲亢| 虫见读什么| 结肠炎吃什么药治疗效果好| 千年修炼是什么生肖| 孩子手脚冰凉是什么原因| 海粉是什么| 斜视是什么原因导致的| 骨皮质扭曲是什么意思啊| 冠脉cta是什么检查| 做什么业务员好| 芝士可以做什么美食| 右脸长痣代表什么意思| bml是什么意思| 空姐在飞机上干什么| 梧桐叶像什么| 晚上夜尿多是什么原因| 舌苔黄腻是什么原因| 凡士林是什么东西| 千里走单骑是什么意思| 今天股市为什么暴跌| 鼻涕有血丝是什么原因| dmp是什么意思| 补肾吃什么药| uhd是什么意思| ddp是什么化疗药| 糜烂型脚气用什么药最好| 高血压适合吃什么水果| 便秘吃什么药能根治| 肺气肿是什么| 发小是什么意思| 2月16日是什么星座| belle什么意思| 拯救银河系什么意思| 胃糜烂吃什么药可以根治| 什么多腔| 夜来非是什么意思| 生殖器是什么| 中国文联是什么级别| 乌鸡蛋什么颜色| 耸肩是什么意思| 孙悟空的真名叫什么| 英国用什么货币| 胸部彩超能检查出什么| 国家主席是什么级别| 昀字五行属什么| 黑芝麻不能和什么一起吃| 荨麻疹忌口忌什么食物| 克罗恩病有什么症状| math是什么意思| 教师节属什么生肖| facebook是什么意思| 绿色加蓝色是什么颜色| 甲鱼炖什么好吃| 60min是什么意思| salute什么意思| 摘环后需要注意什么| 白带什么颜色| 中午12点半是什么时辰| 谝是什么意思| 两个a型血的人生的孩子什么血型| 为什么每天晚上睡觉都做梦| 崩溃是什么意思| 罗宾尼手表什么档次| 陈惠敏和陈慧琳什么关系| 月经不正常是什么原因| 什么是狂躁症| 吃芒果过敏是什么症状| 肝火旺吃什么调理| 看正月初一是什么生肖| 乳腺挂什么科| 什么是爱呢| 枯草芽孢杆菌治什么病| 感冒黄痰吃什么药| arr是什么意思| 咽炎咳嗽吃什么| 湿疹抹什么药| 热病是什么病| 贡生相当于现在的什么| 胰岛a细胞分泌什么激素| 新疆什么时候天黑| 什么叫同工同酬| 糖化血红蛋白是什么| 柏树长什么样子| 五月初九是什么星座| 此地无银三百两什么意思| 咱家是什么意思| 新生儿囟门什么时候闭合| 肝裂不宽是什么意思| 紫水晶五行属什么| 吃四方是什么生肖| 咳嗽呕吐是什么原因| 日本是什么时候侵略中国的| 胎儿颈部可见u型压迹什么意思| 为什么会有眼袋| 25周岁属什么生肖| 什么是粒子| 血压低吃什么药见效快| 生化检查能查出什么病| 异国他乡的异是什么意思| 心肌缺血有什么症状和表现| 带状疱疹长什么样| 连云港有什么特产| 五二年属什么生肖| 胆囊结石不宜吃什么| 脚后筋疼是什么原因引起的| 老人流口水是什么原因| 栓剂是什么| 墨镜镜片什么材质好| 什么茶叶降血压最好| onlycook是什么牌子| 厌氧菌是什么| 乳酸杆菌少或无是什么意思| 不亚于是什么意思| 经常射精有什么伤害| 又拉又吐吃什么药| 儿童急性肠胃炎吃什么药| 本加一笔是什么字| 肌红蛋白偏低说明什么| 西药是什么药| 咳嗽吃什么药好得快| 梦见西红柿什么意思| 598分能上什么大学| 什么是碱性磷酸酶高怎么回事| 室间隔增厚是什么意思| 人为什么要火化| 利可君片是什么药| 什么树叶| 寅五行属什么| 来姨妈能吃什么水果| 08是什么生肖| 为所当为什么意思| 甲状腺低回声结节是什么意思| 苯佐卡因是什么药| 姐妹是什么生肖| 鱼肝油又叫什么名字| 补体c3偏低是什么意思| 腰椎挂什么科室| 预防高原反应吃什么药| cacao是什么意思| 人尽可夫什么意思| 什么是情绪| 苹能组什么词| anna是什么意思| 寒露是什么意思| 精益求精下一句是什么| 白天不咳嗽晚上咳嗽是什么原因| 水蚤吃什么| 蚊子为什么要吸血| 屈服是什么意思| 什么什么的草地| 手淫过度吃什么药| 猫一般吃什么| 睾丸癌是由什么引起的| 振水音阳性提示什么| 吃芒果过敏吃什么药| 女人不排卵是什么原因造成的| 缺铁性贫血吃什么药最好| 刀口力念什么| 牙神经挑了为什么还疼| 耳朵轮廓痒是什么原因| 石女什么样| 血脂高会导致什么后果| 梦到水是什么意思| 喉咙吞口水痛吃什么药| 荼靡是什么意思| 什么情况下| 衣原体支原体感染有什么症状| 小葱拌豆腐的下一句是什么| 断掌什么意思| 上吐下泻是什么原因| 小孩流鼻血什么原因| 过敏是什么样子的| 楚国什么时候灭亡的| 梦见小孩是什么意思| 蛾子吃什么| 胆没了对身体有什么影响| 尿酸高喝什么| 为什么睡觉会打呼| 乳酸杆菌是什么| 掉头发吃什么药| 冒昧打扰是什么意思| 心脏病有什么症状| 一千年前是什么朝代| 脾肾亏虚的症状是什么| 手抖头抖是什么病| 1957年属什么生肖| 二道贩子是什么意思| 宫颈分离是什么意思| 孕妇建档是什么意思| 小孩子坐飞机需要什么证件| 事急从权是什么意思| 吊孝是什么意思| 肝区在什么位置| 密送是什么意思| 便秘吃什么水果| 多吃醋有什么好处和坏处| 脚掌发红是什么原因| 国企混改是什么意思| 老人尿失禁吃什么药最好| 皮卡丘什么意思| 什么叫臆想症| 什么呀什么| 小狗喜欢吃什么| 什么是塔罗牌| 印第安老斑鸠什么意思| 科目三考什么内容| 高半胱氨酸是什么意思| 酱油什么时候发明的| 氯高是什么原因| 生理期腰疼是什么原因| 左眼跳什么预兆| 为什么一吹空调就鼻塞| 纳呆什么意思| 感冒流鼻涕吃什么药好得快| rgp是什么| 什么叫打卡| 人流需要准备什么| mpa是什么意思呀| 金鸡独立是什么意思| 外阴裂口什么原因| 饱和什么意思| 贝尔发明了什么东西| 角膜炎用什么眼药水| 妇科炎症是什么原因引起的| 一什么网| 肝气虚吃什么中成药| 回民为什么不能吃猪肉| 扑朔迷离什么意思| 健脾祛湿吃什么药效果最好| 头发没有光泽是什么原因| 活血化瘀吃什么药| 为什么胸会痒| 阑尾炎挂什么科| 手肿脚肿是什么原因引起的| 大便有粘液是什么原因| 448是什么意思| 乌龟吃什么| 跻身是什么意思| 做梦梦见前男友是什么意思| 人工虎骨粉是什么做的| 看脑血管挂什么科| 痴汉是什么意思| 脑门疼是什么原因| 格林巴利综合症是什么病| 糯米粉是什么粉| 莴笋不能和什么一起吃| 金鱼吃什么| 副营级是什么军衔| 男生适合学什么专业| 菜园里有什么菜| 赛字五行属什么| skp是什么品牌| 百度
Sitemap
TensorFlow

TensorFlow is an end-to-end open source platform for machine learning.

拆除主旋律和观众之间的墙

Posted by the TensorFlow Team

Thanks to an incredible and diverse community, TensorFlow has grown to become one of the most loved and widely adopted ML platforms in the world. This community includes:

In November, TensorFlow celebrated its 3rd birthday with a look back at the features added throughout the years. We’re excited about another major milestone, TensorFlow 2.0.

TensorFlow 2.0 will focus on simplicity and ease of use, featuring updates like:

  • Easy model building with Keras and eager execution.
  • Robust model deployment in production on any platform.
  • Powerful experimentation for research.
  • Simplifying the API by cleaning up deprecated APIs and reducing duplication.

Over the last few years, we’ve added a number of components to TensorFlow. With TensorFlow 2.0, these will be packaged together into a comprehensive platform that supports machine learning workflows from training through deployment. Let’s take a look at the new architecture of TensorFlow 2.0 using a simplified, conceptual diagram as shown below:

Zoom image will be displayed
Note: Although the training part of this diagram focuses on the Python API, TensorFlow.js also supports training models. Other language bindings also exist with various degrees of support, including: Swift, R, and Julia.

Easy model building

In a recent blog post we announced that Keras, a user-friendly API standard for machine learning, will be the central high-level API used to build and train models. The Keras API makes it easy to get started with TensorFlow. Importantly, Keras provides several model-building APIs (Sequential, Functional, and Subclassing), so you can choose the right level of abstraction for your project. TensorFlow’s implementation contains enhancements including eager execution, for immediate iteration and intuitive debugging, and tf.data, for building scalable input pipelines.

Here’s an example workflow (in the coming months, we will be working to update the guides linked below):

  1. Load your data using tf.data. Training data is read using input pipelines which are created using tf.data. Feature characteristics, for example bucketing and feature crosses are described using tf.feature_column. Convenient input from in-memory data (for example, NumPy) is also supported.
  2. Build, train and validate your model with tf.keras, or use Premade Estimators. Keras integrates tightly with the rest of TensorFlow so you can access TensorFlow’s features whenever you want. A set of standard packaged models (for example, linear or logistic regression, gradient boosted trees, random forests) are also available to use directly (implemented using the tf.estimator API). If you’re not looking to train a model from scratch, you’ll soon be able to use transfer learning to train a Keras or Estimator model using modules from TensorFlow Hub.
  3. Run and debug with eager execution, then use tf.function for the benefits of graphs. TensorFlow 2.0 runs with eager execution by default for ease of use and smooth debugging. Additionally, the tf.function annotation transparently translates your Python programs into TensorFlow graphs. This process retains all the advantages of 1.x TensorFlow graph-based execution: Performance optimizations, remote execution and the ability to serialize, export and deploy easily, while adding the flexibility and ease of use of expressing programs in simple Python.
  4. Use Distribution Strategies for distributed training. For large ML training tasks, the Distribution Strategy API makes it easy to distribute and train models on different hardware configurations without changing the model definition. Since TensorFlow provides support for a range of hardware accelerators like CPUs, GPUs, and TPUs, you can enable training workloads to be distributed to single-node/multi-accelerator as well as multi-node/multi-accelerator configurations, including TPU Pods. Although this API supports a variety of cluster configurations, templates to deploy training on Kubernetes clusters in on-prem or cloud environments are provided.
  5. Export to SavedModel. TensorFlow will standardize on SavedModel as an interchange format for TensorFlow Serving, TensorFlow Lite, TensorFlow.js, TensorFlow Hub, and more.

Robust model deployment in production on any platform

TensorFlow has always provided a direct path to production. Whether it’s on servers, edge devices, or the web, TensorFlow lets you train and deploy your model easily, no matter what language or platform you use. In TensorFlow 2.0, we’re improving compatibility and parity across platforms and components by standardizing exchange formats and aligning APIs.

Once you’ve trained and saved your model, you can execute it directly in your application or serve it using one of the deployment libraries:

  • TensorFlow Serving: A TensorFlow library allowing models to be served over HTTP/REST or gRPC/Protocol Buffers.
  • TensorFlow Lite: TensorFlow’s lightweight solution for mobile and embedded devices provides the capability to deploy models on Android, iOS and embedded systems like a Raspberry Pi and Edge TPUs.
  • TensorFlow.js: Enables deploying models in JavaScript environments, such as in a web browser or server side through Node.js. TensorFlow.js also supports defining models in JavaScript and training directly in the web browser using a Keras-like API.

TensorFlow also has support for additional languages (some maintained by the broader community), including C, Java, Go, C#, Rust, Julia, R, and others.

Powerful experimentation for research

TensorFlow makes it easy to take new ideas from concept to code, and from model to publication. TensorFlow 2.0 incorporates a number of features that enables the definition and training of state of the art models without sacrificing speed or performance:

  • Keras Functional API and Model Subclassing API: Allows for creation of complex topologies including using residual layers, custom multi-input/-output models, and imperatively written forward passes.
  • Custom Training Logic: Fine-grained control on gradient computations with tf.GradientTape and tf.custom_gradient.
  • And for even more flexibility and control, the low-level TensorFlow API is always available and working in conjunction with the higher level abstractions for fully customizable logic.

TensorFlow 2.0 brings several new additions that allow researchers and advanced users to experiment, using rich extensions like Ragged Tensors, TensorFlow Probability, Tensor2Tensor, and more to be announced.

Along with these capabilities, TensorFlow provides eager execution for easy prototyping & debugging, Distribution Strategy API and AutoGraph to train at scale, and support for TPUs, making TensorFlow 2.0 an easy to use, customizable, and highly scalable platform for conducting state of the art ML research and translating that research into production pipelines.

Differences between TensorFlow 1.x and 2.0

There have been a number of versions and API iterations since we first open-sourced TensorFlow. With the rapid evolution of ML, the platform has grown enormously and now supports a diverse mix of users with a diverse mix of needs. With TensorFlow 2.0, we have an opportunity to clean up and modularize the platform based on semantic versioning.

Here are some of the larger changes coming:

Additionally, tf.contrib will be removed from the core TensorFlow repository and build process. TensorFlow’s contrib module has grown beyond what can be maintained and supported in a single repository. Larger projects are better maintained separately, while smaller extensions will graduate to the core TensorFlow code. A special interest group (SIG) has been formed to maintain and further develop some of the more important contrib projects going forward. Please engage with this RFC if you are interested in contributing.

Compatibility and Continuity

To simplify the migration to TensorFlow 2.0, there will be a conversion tool which updates TensorFlow 1.x Python code to use TensorFlow 2.0 compatible APIs, or flags cases where code cannot be converted automatically.

Not all changes can be made completely automatically. For example, some deprecated APIs do not have a direct equivalent. That’s why we introduced the tensorflow.compat.v1 compatibility module, which retains support for the full TensorFlow 1.x API (excluding tf.contrib). This module will be maintained through the lifetime of TensorFlow 2.x and will allow code written with TensorFlow 1.x to remain functional.

Additionally, SavedModels or stored GraphDefs will be backwards compatible. SavedModels saved with 1.x will continue to load and execute in 2.x. However, the changes in 2.0 will mean that variable names in raw checkpoints may change, so using a pre-2.0 checkpoint with code that has been converted to 2.0 is not guaranteed to work. See the Effective TensorFlow 2.0 guide for more details.

We believe TensorFlow 2.0 will bring great benefits to the community, and we have invested significant efforts to make the conversion as easy as possible. However, we also recognize that migrating current pipelines will take time, and we deeply care about the current investment the community has made learning and using TensorFlow. We will provide 12 months of security patches to the last 1.x release, in order to give our existing users ample time to transition and get all the benefits of TensorFlow 2.0.

Timeline for TensorFlow 2.0

TensorFlow 2.0 will be available as a public preview early this year. But why wait? You can already develop the TensorFlow 2.0 way by using tf.keras and eager execution, pre-packaged models and the deployment libraries. The Distribution Strategy API is also already partly available today.

We’re very excited about TensorFlow 2.0 and the changes to come. TensorFlow has grown from a software library for deep learning to an entire ecosystem for all types of ML. TensorFlow 2.0 will be simple and easy to use for all users on all platforms.

Please consider joining the TensorFlow community to stay up-to-date and help make machine learning accessible to everyone!

--

--

TensorFlow
TensorFlow

Published in TensorFlow

TensorFlow is an end-to-end open source platform for machine learning.

TensorFlow
TensorFlow

Written by TensorFlow

TensorFlow is a fast, flexible, and scalable open-source machine learning library for research and production.

Responses (13)

亚裔人是什么意思 第一次表白送什么花 双子座和什么星座最配 过敏性紫癜挂什么科 门齿是指什么地方
腼腆是什么意思 3.19号是什么星座 2014年五行属什么 NF什么意思 锌是什么颜色
血栓挂什么科 健脾祛湿吃什么中成药 什么是阴道 什么辣椒又香又辣 世界屋脊指的是什么
两个月小猫吃什么食物 什么的狼 小腿痒是什么原因 老是干咳嗽是什么原因 什么叫生僻字
澳大利亚的国宝是什么hcv9jop5ns0r.cn 主理人是什么意思hcv8jop3ns7r.cn 吃粽子是什么节日hcv8jop9ns4r.cn 妇科检查bv是什么意思hcv7jop7ns3r.cn 炸油条用什么油最好gangsutong.com
委曲求全是什么生肖hcv8jop7ns0r.cn 略是什么意思hcv8jop7ns8r.cn 柏拉图之恋是什么意思hcv9jop4ns6r.cn 成吉思汗什么意思hcv8jop5ns8r.cn 举案齐眉是什么意思hcv9jop3ns7r.cn
起水泡痒是什么原因hcv8jop7ns5r.cn 渡劫是什么意思hcv9jop5ns2r.cn 猴跟什么生肖相冲hcv9jop4ns3r.cn 龙和什么相冲hcv9jop1ns9r.cn 广州有什么小吃特产hcv7jop7ns4r.cn
返酸水吃什么药hcv8jop8ns5r.cn 白牡丹是什么茶hcv9jop6ns8r.cn 流产吃什么药可以堕胎hcv9jop7ns5r.cn 宫外孕什么症状hcv9jop6ns5r.cn 兰州市区有什么好玩的地方hcv9jop7ns9r.cn
百度